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Diagnosing Shocks in Time Series 

Piet de JONG and Jeremy PENZER 

Efficient means of modeling aberrant behavior in times series are developed. Our methods are based on state-space forms and allow 
test statistics for various interventions to be computed from a single run of the Kalman filter smoother. The approach encompasses 
existing detection methodologies. Departures commonly observed in practice, such as outlying values, level shifts, and switches, 
are readily dealt with. New diagnostic statistics are proposed. Implications for structural models, autoregressive integrated moving 
average models, and models with explanatory variables are given. 

KEY WORDS: Dynamic regression models; Interventions; Kalman filter; Outliers; Smoothing; State-space models. 

1. INTRODUCTION 

Many time series are subject to external influences. Our 
interest lies with sudden or unexpected events such as nat- 
ural disasters, strikes, wars, the introduction of new legis- 
lation, or mistakes in recording data. Interventions are by 
nature hard to characterize in terms of quantities that can be 
measured. They are often modeled using dummy variables. 

The problem is often viewed as one of diagnostic check- 
ing or outlier detection. Given a fitted model, are there 
movements in the series that are not adequately accounted 
for? Early methods were based on assumptions of indepen- 
dence. Fox (1972) pointed out that this is inadequate. He 
developed two models for outliers: additive and innovative. 
Iterative procedures for detecting additive, and innovative 
outliers and distinguishing between them were proposed by 
Chang, Tiao, and Chen (1988) and Tsay (1986). Tsay (1988) 
extended his method to include level shifts and changes in 
variance. All of the these methods are based on autoregres- 
sive integrated moving average (ARIMA) models. Many au- 
thors, including LeFranqois (1991) and Tsay (1986) have 
pointed out that outliers or structural changes can intro- 
duce serious bias in the sample autocorrelation function, 
leading to problems with model identification. Balke (1993) 
established that using Tsay's approach, level shifts may be 
labelled as innovative outliers. 

Harvey and Durbin (1986) provided a practical example 
of intervention analysis using structural models. Details of 
the general approach have been given by Harvey (1989). 
The use of smoothed disturbances as a means of diagnostic 
checking was put forward by Harvey and Koopman (1992). 

Intervention analysis in regression is typically carried 
out using deletion diagnostics (Atkinson 1985; Cook 1977; 
Cook and Weisberg 1982). An estimate of the regres- 
sion parameter using the full dataset is compared with 
an estimate based on the data with observations removed. 
Statistics based on the difference, such as Cook's distance 
(Cook 1977), are used to identify outlying points. To detect 
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stretches of overinfluential observation, Bruce and Martin 
(1989) put forward leave-k-out diagnostics. But in time se- 
ries many types of intervention do not fit into the leave-k- 
out approach. The method also requires a great deal of com- 
putationally intensive parameter reestimation. These prob- 
lems have been considered by Atkinson, Koopman, and 
Shephard (1997), who used score statistics to approximate 
the changes in hyperparameters when interventions are in- 
troduced into a series. 

Recently, methods have been proposed (Carter and Kohn 
1994; McCulloch and Tsay 1993; Shephard 1994) in which 
all hyperparameters, including those associated with the 
possible location and size of shocks, are estimated simulta- 
neously within a single framework. Estimation is based on 
Markov chain Monte Carlo, an approach more computa- 
tionally expensive than conventional parameter estimation. 
The resulting estimated model is typically of state-space 
form and can be checked using the diagnostics described in 
this article. 

Diagnostic checking implicitly involves comparison of a 
fitted null model to an alternative. This article proposes a 
method in which the null can be any model that has a state- 
space representation. The alternative reflects the suspected 
inadequacy in the null. The addition of shocks can be used 
to model a large range of potential structural changes. We 
demonstrate that all statistics associated with these inter- 
ventions can be generated from a single run of the Kalman 
filter smoother (KFS) applied to the null model. 

The proposed statistics for detecting aberrant behavior 
are calculated directly from the fitted null model output. If 
unusual behavior is found, the model can be refitted taking 
into account the additional structure and the diagnostic pro- 
cedure repeated, in the spirit of Box and Jenkins (1976). In 
general, statistics for detecting structural changes in time 
series are serially correlated. Plots of test statistics against 
time provide a useful alternative to formal testing. Here we 
focus on general multivariate time series; however, for sim- 
plicity, the results can be thought of in terms of univariate 
series. Conditional expectation is defined in the linear pre- 
dictor sense, and conditional covariance is the covariance of 
the prediction errors. Both of these quantities are defined 
with respect to the null model. 
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The layout of this article is as follows. Terminology is de- signature 
fined and estimation of interventions discussed in Section 2. A 
An efficient representation of interventions via shocks in 
state-space models is put forward in Section 3. This leads 
to the key result that diagnostics can be generated from the 1- . 
output of a single null model KFS run. New statistics are 
suggested in Section 4, and the application of our results 
to structural time series and ARIMA models is explored in 
Section 5. Models with explanatory variables are discussed 
in Section 6, and the general composite intervention case is 
covered in Section 7. Proofs are given in the Appendix. 

a : time 
2. INTERVENTIONS 2 

Assume that there is a model that is thought, at least 
initially, to be an appropriate representation of the process signature 

that generates the data y = (y i ,  . . . ,yk)'. This is referred 
to as the null model. Assume that the null model states t 
that y has mean 0 and covariance matrix a 2 E ,  denoted by 
y - (0,a2E).The matrix E gives the serial correlation of 1 
the series. Explanatory variables, such as mean effects or 
exogenous observed series, can readily be included and are 
dealt with in Section 6. We want to check for departures 
from the null model. These are modeled by the addition of 
an intervention variable, D = ( D i , . . . ,DL)'. The alterna- 
tive is denoted by y - (D6,a2E)which reduces to the null 
if 6 = 0. I :time 

For a univariate series with 6 scalar, D is a column vector i if1 
called the intewention signature. More generally, each col- 
umn of D defines an intervention signature. Figure 1 illus- signature 
trates the shape of three common signatures. The simplest A 
is a measurement intervention that models a single outly- 
ing point caused by, for example, a mistake in recording 1-
the data. A level shift, characterized by a permanent shift 
in the mean of the series, is modeled by a signature that 
takes the value 0 up to point of the shift and 1 thereafter. 
Examples of series with level shifts are the Nile data of if 1 
Cobb (1978) and the seatbelt data analyzed by Harvey and + time 
Durbin (1986). The third intervention displayed in Figure 1 2 
is a switch intervention, consisting of consecutive extreme 
values on either side of the current level of the series. This 
could be caused by increased production after a strike or 
a collapse in stock values after a sudden rise. Thus inter- 
ventions are characterized by origin (i.e., the first point of -1 -
impact) and shape. Magnitude is determined by estimation. 

Given D and E ,  the intervention parameter 6 can be es- 
timated using generalized least squares (GLS), Figure 1. Some Common Intervention Signatures. 

8 = S-Is, cov(8) = a2sp1, (1) ing the test statistic 

where 

s = D ' E - ~ ~ ,  s = DIE-ID. 

The quantity s is called the intewention contrast. The test The estimate of a2 can be adjusted to take into account 
the intervention, so e2= n-' (ylE-ly -slS-IS). The statis- of the hypothesis of no shock, 6 = 0, is based on 
tic r2 has an approximate distribution, where p is the 

8'{cov(8)}-'8 = av2s's-'s. rank of S or, ec&ivalently, thl  number of linearly <ndepen- 
dent columns in D .  Dividing each component of 8 by its 

In practice, a2is often replaced by the normal based maxi- estimated standard error gives r ,  the analog of the usual 
mum likelihood estimate (MLE), e2= (y1E-ly)/n, yield- regression t statistic. 
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In practice, neither D nor X is known. Typically, E is a and 
function of hyperparameters estimated under the null. The 
presence of shocks may distort these estimates and thus at+l= Ttat+ Htc t ,  t = 1,.. . ,n,  (5) 
iffect the test statistics.-our experience is that, at least for 
structural time series models, this distortion is not usually 
sufficient to obscure outliers and structural breaks. 

To illustrate the detection process, consider the well- 
known Nile data (Cobb 1978). These data consist of read- 
ings of the annual flow volume of the Nile River at Aswan 
for 1871 to 1970; see Figure 2. A random walk plus noise 
model, 

and 

with 82 = 15,099 and 8; = 1,469.2, appears to fit the data 
well. Suppose that outliers or level shifts in these data are 
suspected. The detection procedure consists of computing 
the r2statistic (2) for these two interventions, at each point 
of the series; see Figure 3. The plots indicate outlying values 
in 1877 and 1913 and a level shift in 1899. Refitting the 
model including these interventions results in an estimate of 
0 for the variance of the level component. The next section 
describes an efficient method for computing these statistics. 
In Section 4 we propose a chi-squared test statistic T * ~ .  This 
statistic indicates, at the start of the diagnostic procedure, 
whether any further investigation is necessary. The large 
peak around 1900 in the T * ~statistic for the Nile series 
suggests unusual behavior in the data; see Figure 4. 

3. SHOCKS IN STATE-SPACE MODELS 

The null state-space form of yt is 

where E~ ,-- (0, a21),a1 ,-- (a1,a2P1),  and the ct and a1 

are mutually uncorrelated. The system matrices Zt ,Tt,Gt ,  
and H t  are deterministic quantities that, as the notation in- 
dicates, may vary over time. For a univariate model with 
an m x 1 state vector at and p x 1 vector of errors E ~ ,the 
matrices Zt,Tt,Gt ,  and H t  are 1 x m, m x m, 1 x p, and 
p x p. Equations (4) and (5) serve to define cov(y) = a2E. 

An important tool for the state-space model is the well- 
known Kalman filter (Anderson and Moore 1979). For t = 

1,. . . ,n, 

and 

where Lt = Tt - KtZt  and Jt = H t  - KtGt .  Closely 
related to Kalman filtering is smoothing, which is efficiently 
implemented using the smoothing recursions put forward 
by de Jong (1988a, 1989) and Kohn and Ansley (1989). 
These recursions use output from the Kalman filter and are 
initialized with r, = 0 and N, = 0 and then, for t = 
n , .  . . , I ,  

Figure 2. Nile Example: The Flow Volume of the Nile. 
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Figure 3. Nile Example: r2 Statistic for Measurement (a) and Level (b) Shocks. 

rt-1 = Ziut +Tirt, ut is scalar. The rt have the same dimension as the state 
vector. The properties of smoothations are described by the 

and following theorem. 

Theorem 1. The smoothations ut  are such that 
(7) 

ut = Mtiy t  - ~ ( y t l y " }  
The combined recursions (6) and (7) are called the Kalman 
filter smoother (KFS). The smoothing recursion output- and 
in particular, the smoothations, ut-are fundamental for 
shock detection. Smoothations have the same dimensions 
as the observations and thus for a univariate series, each 

Figure 4. Nile Example: Maximal Statistic T * ~ .  
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where y t  is y excluding yt .  Further, if u = (u i ,  . . . ,uk)', 
then u = C-ly  and cov(u) = a2E- l .  

The alternative model is defined by addition to the mea- 
surement and transition equations of a vector of shocks 6, 

and 

where X t  and Wt are called the shock design matrices and 6 
is the shock magnitude. Many departures observed in prac- 
tice can be represented by a simple intervention; that is, by 
taking all X t  and W t  to be 0 except at a single point t = i. 
The signature of a simple intervention with origin i is 

where Tj,,= Tj . . . Tt for j 2 t and TtPl,t= I. The ma- 
trix D(i)  = (Dl(i)', . . . ,D,(i)')' is the intervention signa- 
ture corresponding to a shock,& at t = i. The corresponding 
GLS estimate (1) is Bi = s i l s i ,  where the i subscripts indi- 
cate the origin i of the intervention. The following theorem 
shows how the shock contrast si is directly available from 
null model KFS output. 

Theorem 2. Suppose that the null model KFS output is 
available. The shock contrast si and covariance matrix S, 
corresponding to a simple shock at t = i are 

and 

where Qi = Wi -KiXi.  

The expression for si is established by noting, from (7), 
that 

Applying Theorem 1 yields si = D(i) 'C-ly = D(i)lu. 
Combining these results with expression (1 1) for the signa- 
ture yields 

as required. The proof of the expression for Si is given in 
the Appendix. 

Varying i (i.e., running the simple intervention along the 
series) allows detection of sudden or unexpected move-
ments. Theorem 2 yields the GLS estimate of and the 
test statistic rj for origins i from 1 to n. No assumptions 
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about the nature of the intervention are made in the fil- 
tering and smoothing process. Thus intervention statistics 
for any number of interventions can be computed without 
doing any additional KFS runs. 

Theorem 2 provides a concrete interpretation of the quan- 
tities involved in the smoothing recursions. For example, the 
case where X i  = I and W i  = 0 denotes a pure measure- 
ment shock at t = i. The shock contrast is si = ui, and 
ML'U~= yi -E(yilyi) is the GLS estimate of shock. This 
result is intuitively appealing, because it states that the esti- 
mate Bi is the difference between the observation yi and the 
estimate of yi based on all other data points. Pefia (1990) 
stated this in a less general context, as a well-known result. 
The case Xi = 0 and Wi = I, where each component of 
the state is shocked separately, is called a pure state shock. 
Here si = ri, and the GLS estimate of the shock is ~ ; ' r i .  
Finally, consider an aberrant disturbance, 

and 

ai+l= Tiai+ Hi(s i  + 6). 

Then Xi = G i  and W i  = Hi,  and so si = G:ui +H:ri and 
Si = G ~ F T ' G ~+ J iNiJ i .  

Our approach can be contrasted with existing methods. 
From de Jong (1988), Kohn and Ansley (1989), and Koop- 
man (1993), E ( z i y )  = G;ui + H;ri. For structural time 
series models, Harvey and Koopman (1992) suggested the 
scaled E(cily) as diagnostics called auxiliary residuals. 
Their scaling amounts to multiplying by the inverse square 
root of cov(eily) = a21- cov{E(sily)). By the forego- 
ing argument, scaling based on + J iN i J i )~ ' ( G : F ; ~ G ~  
is more appropriate. Note that ~ ' ( G ; F ; ~ G ~  + J:Ni Ji) = 
cov{E(sily)). From the preceeding paragraph, using the 
appropriate scaling yields the analog of the regression t 
statistics. General state-space methods have been proposed 
by Willsky and Jones (1976) and later by Atkinson et al. 
(1997), who use the fact that the Kalman filter is a linear 
transformation Ly = v, where v = (v i ,  . . . ,v;)' is the 
stack of the innovations. It follows that c-' = L'F- L, 
where F = diag(F1,.. . ,F,) = a-'cov(v). Thus 

can be computed by filtering D(i)  for each i and for every 
intervention structure of interest. This approach is clearly 
inefficient, because it requires the explicit construction and 
filtering of D(i)  for every signature and origin i of inter- 
est. The relationship between filtering the signature and the 
smoother based methods that we develop is illustrated by 
Figure 5. 

4. TEST STATISTICS 

The shock design matrices X, and W ,  determine the type 
of simple intervention resulting from a shock, and the pre- 
vious sections assume that X, and W i  are given. Instead, 
the data can be used to suggest appropriate shock designs. 

Theorem 3. For given i and the null state-space model, 
the maximum of P,2 = s:s;lsi with respect to Xi  and W i  
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si= D(i)'C-'y 

Figure 5. The Relationship Between Observations, Innovations, and 
Smoothations. 

where vi,  Fi,ri, and Ni are computed with the KFS applied 
to the null model. The maximum is attained when Xi = vi 
and W i  = Kivi  +~ ; ' r i ,and hence when 6 is scalar. 

The maximization is with respect to all matrices Xi and 
W i  of fixed row dimension. The maximum is attained when 
6 is scalar with Xi and Wi as indicated earlier, distribut- 
ing the scalar shock over the measurement and state equa- 
tions. The proof of Theorem 3 shows that the maximum 
is also attained when (Xi, Wk) = I, corresponding to sep- 
arate shocks to the measurement and each component of 
the state equation. It also follows from the proof that if 
X i  = 0,then the maximum of p: is r;N;'ri attained at 
Wi = N i l r i ,  whereas if W i  = 0,then the maximum is 
u;M;'u~ attained at Xi  = M;'U~. 

These results provide a means of identifying the origin 
and shape of possible interventions. The test statistic (2) 
has maximum value rT2 = F 2 ~ r 2regardless of whether 
C2 is adjusted to take the intervention into account. A plot 
of r,*2against i shows, for each i, the value of r: under 
the shock design that has maximum impact at that point. 
The values of Xi  and W i  that maximize p: can be used to 
suggest plausible intervention signatures. 

The components of v;F;'vi and r;N;'ri are, given the 
model parameters, approximate independent chi-squared 
random variables with degrees of freedom equal to the num- 
ber of components in the measurement equations and the 
state equations. Thus rt2is also approximately chi-squared. 
This provides a yardstick for judging the significance of 
plotted values of 7a2.However, when many points i are con- 
sidered, issues of serial correlation and simultaneous testing 
arise. 
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5. INTERVENTIONS IN PRACTICAL MODELS 
This section deals with shocks in the context of two time 

series models frequently used in practice: structural com- 
ponents models (Harvey 1989) and ARIMA models. These 
models are time invariant, so Tt = T and Ht = H are 
independent of time t. 

5.1 Structural Time Series Model 

The local linear trend model has state-space form 

and 

The components of the state vector at are the level and 
slope of the series. The signature from a pure measurement 
shock represents a single outlying value. A level interven- 
tion is modeled by taking Xi = 0 and W i  = ( 1 , O ) ' .  In 
this case si and Si correspond to the first element of ri 
and the first diagonal entry of Ni. Adding a shock to the 
level is equivalent to adding a step function in the mea- 
surement equation with a single step at t = i. Changes in 
the slope of the series are handled by taking Xi = 0 and 
Wi = (0'1)'. From (ll),the resulting shock signature has 
the form Dt(i)  = t - i - 1 for t > i. The relevant shock 
contrast is now the second element of the vector ri, and Siis 
the second diagonal entry in Ni. Taking Xi = 0 and W i  = I 
yields a pure state shock with shock estimate N;'ri. This is 
different from the estimates generated using separate level 
and slope shocks. 

Our methods apply to seasonal series. To simplify the 
discussion, consider a model with a single component. The 
general case follows by combining components. A struc- 
tural representation of a pure cycle has Z= (1,O), 

cos w sinw 
T = m (  

- sinw cosw > .  

( cos wj sin w j  
Tj = 

-sinwj coswj 

and 4 5 1. Apart from measurement noise, yt is a cosine 
function with fixed frequency w but slowly varying ampli- 
tude and phase. At time t, the amplitude and phase are the 
polar coordinates of at.The signature of a state shock at i 
is 

Dt (i) = $t-i{61 cos w(t - i) + 62 sin w(t - i ) )  

for t > i. This is equivalent to adding a damped cycle 
with damping factor 4, amplitude J(6: + 6:), and phase 
a r ~ t a n ( 6 ~ / 6 ~ ) .If q5 = 1, then the shock effect is persistent. 
The polar coordinates of 6 measure the aberrant changes 
in amplitude and phase. If 62 = 0, then there is a change 
in amplitude but no change in the positioning of the peaks 
or troughs of the cycle, a type of behavior that may be ob- 
served in practice. If 6' = 0, then the change is a i ? r  radian 
shift in the phase, which is of limited practical relevance. 
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5.2 Autoregressive Integrated Moving Average Models 

An ARIMA(p, d , q )  model is written as $ ( B ) ( l- B)d  
yt = where B is the backshift operator, 4(B)  1-O(B)E~ ,  = 

C:='=,$ , B h i t h  all roots outside the unit circle, O(B)= 1 
+ C:==, E~ are uncorrelated (0,a2)ran-Q,BZ,and the 
dom variables. Consider initially the stationary case d = 

0. The usual state-space representation is Zt = Z = 

( 1 , O , . . . ,O),Gt = G = 0 ,  

and 

where m = max(p, q + 1).From (ll),a shock to the state 
disturbance, Xi = 0 and Wi= H, yields 

q 

Dt ( i )  = ZT"'H = x ~ - ~ - ~ O ~ ,  
j =O 

where ?rk is the coefficient of B q n  the expansion of l / $ ( B )  
for k > 0 and .irk = 0 for k < 0. Thus the signature Dt(i) 
is made up of coefficients in the polynomial expansion of 
O(B)/c$(B);that is, the coefficients in the infinite MA rep- 
resentation. A measurement shock corresponds to X, = 1 
and W ,= 0 with shock signature Dt(i)= 0 for t # i and 
D,(i)= 1. The corresponding estimates of 6 for each i are 
generated using a single run of the KFS, as described in 
Section 3. 

Our approach can be compared to ARIMA-based meth- 
ods, including the method of Tsay (1988). He studied 
shocks by considering models of the form 

where 4(B)and Q ( B )are the AR and MA polynomials of 
the null ARIMA model and Dt ( i )  = w(B)&( i )is the shock 
signature with &(i)= 0 for t # i and &(i)= 1. The cases 
w(B)= 1 and w(B)= O(B)/$(B)are called additive and 
innovative outliers, and are equivalent to our measurement 
and state disturbance shocks. To estimate 6 ,  the model is 
rewritten by multiplying both sides of (16) by $(B)/O(B), 
yielding Gt = At (i)6+ E ~ ,where Gt = {$(B)/O(B))yt 
and At ( i )  = { $ ( B )/ Q  ( B ))Dt ( i ) .  The approximate inno- 
vations Gt are regressed on the filtered innovation signa- 
ture At ( i ) for each origin i. In the innovational outlier 
case, w(B) = Q ( B ) / 4 ( B ) ,implying that At(i) = &(i)  

and hence $, = 6,. With additive outliers, w(B) = l ,  so 
At ( i ) = {$(B) /Q(B))<t( i ) ,the coefficients of the infinite 
AR representation. 

The first difference between the ARIMA approach and 
our KFS-based method is that the latter is exact. Mul- 
tiplying by 4 ( B ) / Q ( B )is the polynomial approximation 
to the transformation Ly = v discussed at the end of 
Section 3. Using 8,gives poor results when the roots of 
Q ( B ) ,$ (B) ,w ( B ) ,or l /w (B)are close to the unit disc and 
the data series is short. Second, our approach does not in- 
volve explicit regression for each origin i but achieves this 
implicitly by appropriate interpretation of the null model 
KFS output. Third, the state-space methodology allows for 
a much wider class of shock designs. Finally, the KFS 
method applies to any model that can be cast in the state- 
space form, not just to ARIMA models. 

A nonstationary ARIMA(p, d, q ) ,  where d 2 1, can be 
treated as a structural model with stationary autoregressive 
moving average [ARMA(p, q ) ]  disturbances. In the state- 
space form, the T matrix can be taken to have two blocks 
on the diagonal, the first block representing the nonsta- 
tionary structural component and the second block mod- 
eling the ARMA disturbances. Introducing a level shock 
to this model is equivalent to a level intervention where 
w(B)= (I-B)-l .  

6. TIME SERIES MODELS WITH 
EXPLANATORY VARIABLES 

Diagnostic tools for regression models with uncorrelated 
disturbances have been dealt with extensively in the lit- 
erature (Atkinson 1985; Cook and Weisberg 1982). This 
section generalizes predicted residuals and influence to 
the time series regression setting. As in uncorrelated er- 
rors case, statistics are readily computed from the null 
model fit. 

An example model is regression with ARMA(p, q )  er-
rors, yt = where the additional ,BXt,pP + {O(B) /$ (B) )E~ ,  
subscript on Xt distinguishes this matrix from that used to 
denote a shock to the measurement equation. Harvey (1989) 
provided another model and a practical case of a time se- 
ries influenced by observed exogenous variables-namely, 
monthly traffic fatalities, which are dependent on the price 
of fuel and the total number of kilometers travelled by all 
cars each month. The general state-space formulation in- 
cluding regression variables is 

and 

at+1 = Wt,@P+Ttat  +Htst, 

where Xt,p and Wt,pcontain the explanatory variables. The 
state-space equations imply that for some matrix B ,y -
(BP,  a2E).  A simple mean effect is modeled by taking 
Xt,p = I and W t , p  = 0 for all t.  

A null model run of the KFS now includes additional 
recursions relating to the explanatory variables, 

Vt = Xt,p - Zt At, At+l = -Wt,@	+ KtVt + Tt At,  
t = 1 , . . . ,n, (17) 



803 de Jong and Penzer: Diagnosing Shocks in Time Series 

where Al = 0, and in the smoother 

where R, = 0. The recursions (17) and (18) are the data- 
dependent part of the ordinary KFS applied to the explana- 
tory variables. The smoothations of the columns of B are 
given by U = (Ui,. . . ,U/,)'. The KFS together with (17) 
and (18) is called the diffuse or augmented KFS (de Jong 
1991). 

Shocks are included using the method described in Sec- 
tion 3. The vectors S and P are stacked as y = (S1,P1)l, 
and the regression matrix incorporating all external effects 
is denoted by X, = (D(i), B). The GLS estimate of y cor-
responding to an intervention with origin i is 

where (19) defines sp, Sp, and Si,g.Thus Ticontains the 
estimate of both shock and regression parameters associated 
with the explanatory variables, adjusted for all other effects. 

Quantities in (19) are evaluated in a single run of the 
augmented KFS. The contrast si and Si is calculated as in 
(12). The quantities associated with the explanatory vari- 
ables alone-that is, sg = B1uand Sp = a-'cov(sp)-are 
not dependent on i, the origin of the intervention. In fact, 

and 

are calculated in the augmented Kalman filter pass. Here 
L and F are as defined at the end of Section 3. The quan- 
tity Si,, = D ( i ) I Z I B  can be computed by noting that 
the components of E-lB are the smoothations Ut of the 
columns of B. Using the expression for D(i) given in (1 1) 
yields 

where U, and R, are given in (18). 
The null model GLS estimate of ,B is p = s j l sp .When 

interventions are included, (19) yields the estimate of P that 
partials out shock effects. A partitioned matrix inversion of 
(19) shows that 

and 

As before, GLS estimates of the parameters associated with 
all regression variables are generated with a single null 
model KFS run. 

When E = I, observations are uncorrelated and B = 

Xp = (Xi,,, . . . ,X;,,)'. The only meaningful signature 
corresponds to a measurement shock, and then the esti- 
mates in (20) reduce to the well-known regression diag- 
nostics (Atkinson 1985) 

and 

and gi is the predicted or cross-validation residual at i. The 
quantity ( X ~ X ~ ) - ~ X : , , ~ ,is proportional to the sample in- 
fluence curve. Thus the quantities in (20) generalize these 
notions to the case where the errors in the linear model are 
correlated. 

Measures of influence of a shock on the parameter es-
timate 8 can be defined from the expressions in (20). For 
example, a quantity analogous to Cook's distance (Cook 
1977) is 

This statistic is typically scaled by division by p82,where 
p is the number of explanatory variables and c2 = 

n-l (vlF-lv - sbsjlsp), the null model estimate of a'. 

The alternative model estimate of a', 

which takes into account the effect of the shock, may also be 
used. Cook described several extensions of his method for 
measuring influence. Time series generalizations of these 
statistics are readily computed using the foregoing KFS 
framework. 

7. COMPOSITE INTERVENTIONS 

For a simple intervention, the signature is constrained by 
the form ZtTt-l,i+l for t > i. More general shock sig- 
natures are generated by allowing the Xt and Wt in (9) 
and (10) to be nonzero for t = i , . . . , i  + q. Because the 
same intervention is considered for different origins i, it is 
convenient to adopt the notation 

and 

at+l= Wt(i)S+ Ttat +H t ~ t ,  

where Xt(i) = 0 and Wt(i) = 0 for t < i and t > i + q. 
The shock signature is then 
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The case q = 0 yields a simple intervention. 
As an example, consider the local linear trend model (15). 

Temporary changes in the structure of this type of series 
can be represented using just two shocks, one to initiate 
the change and the other q periods later to turn it off. For 
example, a slope change that affects only q periods is gen- 
erated by applying a shock to the second component of the 
state vector at t = i and then an equivalent reverse shock 
at t = i + q. Taking Xt (i) = 0 and Wt ( i )  = 0,except for 
Wi( i )  = (0 , l ) '  and W,+,(i) = (0, -I)', yields the inter- 
vention signature, 

The signature indicates a linear increase in the level for 
periods t = i through to t = i + q, after which the series 
reverts to its normal dynamics but starting from a level q6 
higher than in the absence of an intervention. This signature 
is illustrated by Figure 6. 

Estimation and testing of shock effects under the more 
general model is based on the intervention contrast 

where u j  and rj are generated by the KFS applied to the 
null model. The covariance, Si= can be gen- ~ - ~ c o v ( s ~ ) ,  
erated recursively. Details and proofs are given in the Ap- 
pendix. 

To illustrate, consider a state shock at t = i with an 
equivalent reverse shock at t = i + q; that is, Wi( i )  = I 
and Wi+,(i) = -I. Using (21) yields 

and thus 

where Lj,t = Lj  . . .Lt for j 2 t. 
Another approach to composite interventions is to ex- 

ploit the idea of model multiplicity. The null model can 

signature 
A 


4 -

be written in an overelaborate form including components 
that under the null, play no role in the measurements. These 
additional state elements introduce structure into the transi- 
tion matrix T, allowing more general signatures to be prop- 
agated. For example, suppose that the null is a random walk 
plus noise (3).The null corresponds to (15) where the slope 
is constrained to be 0; that is, a l , 2  = h2 = 0. Statistics 
to detect slope changes can be computed by using simple 
interventions in this overelaborate form of the null model. 

8. CONCLUSION 

The introduction of shocks is a powerful tool for ana- 
lyzing departures from a fitted null model. Many forms of 
aberrant behavior can be modeled efficiently by shocks to 
the transition equation of a state-space representation. We 
have established that alternative model statistics take simple 
forms when viewed as functions of the smoothations. Test 
statistics for any number of interventions can be generated 
using the output of a single null model KFS run. 

Many authors (e.g., Ansley and Kohn 1985; de Jong 
1988b, 1991; Harvey and Phillips 1979) have described the 
problem of filtering a series with diffuse initial conditions. 
They put forward a number of related algorithms that in- 
volve adjustments to the filtering equations. Diffuse initial 
conditions can be modeled by the introduction of a shock 
at t = 0. Running the KFS, using an arbitrary initialization, 
will provide an updated estimate of the starting conditions. 
This step can be incorporated into the optimization algo- 
rithm. Thus, on convergence of the maximization process, 
the estimate of the initial conditions will be computed along 
with the MLEs of the hyperparameters. 

APPENDIX: PROOFS 

Proof of Theorem 1 

The proof o f  this theorem is based on the following lemma. 

Lemma. Suppose that cov(y)  = a 2 z .Let J y  be any selection 
o f  the components o f  y with Ky denoting the remaining compo- 
nents. Then 

and 

Pro05 Put yl = Ky and yz = J y  and, without loss o f  gen- 
erality, assume that y = (y;, y;)'. Partition E conformal to the 
partition o f  y. By the inverse o f  a partitioned matrix, 

where 

time 
i 
 i+l iSq 

which establishes (A.2). By definition, 

Figure 6. Intervention Signature for a Temporary Level Shift. E(YZ/YI)E(y2) + ~21x ;~{y1  E(yl)),= -
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and hence the lower block of E-'{y - E ( y ) )  is given by attains the stated maximum (Rao 1973) at 

E~~:[{YZ- E(y2))  - - E ( y l ) ) ]~ ~ i ~ ; ~ { y 1  

= { a - 2 ~ ~ v ( ~ 2 1 ~ 1 ) ) - 1 { ~ 2E ( Y ~ I Y ~ ) ) ,-

which establishes (A. 1). 
Returning to Theorem 1, let v be the stack of innovations, u be 

the stack of smoothations, and cov(y) = u 2 E .  The innovations 
are given by v = Ly,  where L is a lower triangular matrix with 
identity matrices on the diagonal. Thus 

cov(v) = cov(Ly) = a 2 L E L '  = u2diag(F1,. . . ,F,) E a2F 

The Kalman filter equations (6) for vt  and at+l can be written as 

Similarly, combining the equations (8) for u t  and rt-1 yields 

which works through the data, in reverse order, with r, = 0 and 
-F;'vt as input. Thus if v = Ly,  then 

Now cov(ut)  = a 2 ~ / I t ,so from (A.3), it follows that M t  is the 
tth diagonal block of EP1.  That u t  = Mt{yt - E(yt ly t ) )  now 
follows from the lemma. 

Proof of Theorem 2 

That s, = Xju ,  + War, has been established in Section 3. It 
follows that 

s, = x:(F,~v, - ~ i r i )+w:ri = x : F i 1 v i  + Qjr, .  

Now ri is  linear in the future innovations, and hence vi and 
r, are uncorrelated with covariance matrices F, and Ni .  Hence 
cov(s,) = a2S,  is as asserted. 

Proof of Theorem 3 

Put A = (X:, W j )  and x = (u j ,  r;)'; then 

pa = (AX)'{U-2~~~(~~))-1(~~). 

Define A -  as a generalized inverse of A .  If A has full column 
rank, then A - A  = I and 

where 

Partitioned matrix inversion yields 

Thus the maximum is as stated in (14) when A has full column 
rank. If A has rank 1, then 

For A with rank between 1 and full column rank, the maximum 
must be equal to (14), because it must lie between the rank 1 and 
full column rank maxima. 

Correlation of Shock Estimates 

We can exploit the fact that the v t  are uncorrelated and 
rt = CL=t+l  L ' , - l , t + l ~ ' , ~ , l ~ ~  to derive a simple expression 
for cov(si, s j ) .  For i < j ,  

Noting that cov(&, 6 j )  = S,lcov(si, s, )ST' yields 

where L,,t = L, . . . L t  for j 2 t ,Lt-1,t  - I and Lj,t  = 0 for 
j < t - 1 .  

More on Composite Interventions 

The expression for s, is proved by noting that the intervention 
signature is given by D ( i )  = ~ g f = :D ( i ,  j ) ,  where D ( i ,  j )  is the 
shock signature arising from the shock entry at t = j ,  and s, = 
~ " + 4,=, si,,, where 

Inspection of the covariances between the si,j leads to the recur- 
s iontocomputes , .  Set Si +- O a n d C  t O a n d f o r j  = i + q ,  . . . ,  
i, compute recursively 

Si  t Si + x j ( i ) ' F  j'x, (i) 

+ Qj(i) 'NjQj( i)  + Q,(i)'C + c f Q j ( i )  

and 

C t Z ; F ~ ' X , ( ~ )+ L;{NjQj(i) + C), 

where Q j  (i) = W, (2)  -K j X ,  (2). 
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